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SUMMARY: 

The application of the point-matching method tcr three-dimensional 

problems i s  formulated i n  this report. 

scattering of  plane waves by accoustically soft and hard bodies of revolution. 

Due to the symmetry o f  the scatterer, the incident wave i s  expanded i n  

Fourier series of azimuth angle. A number of systems of simultaneous Inhomo- 

geneous algebraic equations is necessary to obtain a solution. Each of  these 

systems of equations i s  quite similar to that of the two din ensional problem. 

The accpustic formulation i s  extended to obtain the solution for scattering 

of electromagnetic plane waves by perfectly conducting rotational symmetric 

bodies. In  this case, the boundary conditions consist o f  two tangential com- 

ponents of the electric f ie ld whichvanish at  the surface o f  the scatterer. 

Investigations are started from the 

However, the resultant equations are i n  the same form as i n  the accoustic 

problem. 
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1.  I NT ROD UCTl ON : 

The point-matching method has been applied i n  many areas of 
1 - 6  

engineering science during recent years . Most of these applications 

are two-dimensional eigenvalue problems. A finite number of  points 

around the periphery of the boundary i n  question are chosen such that 

these points describe the boundary contour approximatel:'6. By 

uti l izing a computer, this method can easily produce many practical 

solutions to the eigenvalue problem and similar types o f  problems. For 

example, a l  I hol low-piped waveguides within the limitations posted i n  

Ref. C61 can be solved by the same computer program. 

three-dimensional problems, many more points are necessary to describe 

the surface of the body under consideration. The huge number of  

algebraic equations required i n  some systems may be beyond the capacity 

of  the present computers. 

rotational symmetric bodies which are frequently confronted i n  practical 

applications. The problem of scattering by bodies of  revolution w i l l  be 

investigated by the point-matching method i n  this paper. The three- 

dimensional problem i s  reduced to several problems similar to those of  

two-dimensional cases. This reduction i s  due to the rotational symmetry 

However, for 

But, this diff iculty can be overcome for 

of jcatteiei :he ;e;G!L;tioz cf the iccidefi!' \,AJC\/e i n  terms cf P V l i I 7 -  ' I  

drical modes. 

In  the following considerations, the scalar plane wave scattering 

by accoustically soft and hard bodies of  revolution w i l l  be investigated 

first. This case i s  quite similar to the two-dimensional scattering 

problem 

principles of the point-matching method in three-dimensional problems. 

Practical approximate solutions can be obtained i f  this method i s  applied 

to rotationally symmetric bodies of smooth contour which are not a gross 

2 - 4  . From accoustic formulations it i s  easy to see the basic 
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deviation from a semi-circle. The scattering of electromagnetic wave by 

perfectly conducting bodies of revolution w i l l  be considered next. The 

formulation i s  more complicated, however, the basic principle and the 

applicability of  the method are similar to those o f  accoustics. The scat- 

tering properties are determined by the polarization and the propagation 

direction of  the incident plane wave as well as the shape of  the scatterer. 

Since any arbitrarily polarized plane wave can be resolved into two 

components namely: the transverse electric (TE) and the transverse magnetic 

(TM) polarizations with respect to the symmetric axis o f  the body, the 

scattering o f  TE and TM waves can be considered separately without loss 

o f  the generality. The total scattered fields o f  an arbitrarily polarized 

plane wave are simply the superposition of  the TE and the TM solutions. 

In  a l l  cases, the method takes i t s  starting point in the resolution 

of  the incident wave functions into cylindrical modes which are the terms 

of the Fourier expansion with respect to the azimuth angle of  the incident 

wave function. The scattered field i s  expressed in  the form of the general 

spherical harmonic solution with specification of outgoing wave. The 

point -matching technique i s  applied to the boundary conditions for terms 

o f  the same azimuth variation. Then, the problem i s  approximated by a 

finite number of  systems of linear inhomogeneous algebraic equations which 

can be solved by a computer i n  the same routine. With the knowledge of  

the scattered fields, a l l  scattering properties can be evaluated easily. The 

expressions for the total scattered power and the total scattering cross section 

are quite simple. I n  the case o f  nose on scattering, the problem reduces to 

only one system of equations. 

2 



2. BACKGROUND: 

The scatterer under consideration i s  a body of  revolution which 

encloses the origin of  the coordinate system as shown in  Fig. 1. In  

accoustics, the body i s  either soft or hard. For scattering of electro- 

magnetic waves, the body i s  made o f  perfectly conducting material. 

Without loss of generality, the incident wave may be assumed to be 

propagating i n  the direction e= eo , and 

are the spherical coordinates with z axis colinear with the symmetric 

axis o f  the body. The incident accoustic plane wave i s  a scalar 

quantity while the incident electromagnetic plane wave i s  a vector. 

Any arbitrarily polarized plane wave can be resolved into two components: 

one polarized with electric field perpendicular to the plane of  incidence; 

and the other polarized with electric field parallel to the plane of  incidence. 

With respect to the z-axis, the symmetric axis o f  the body, the perpen- 

dicular polarization i s  a transverse electric (TE) wave while the parallel 

polarization i s  a transverse magnetic (TM) wave. 

scattering of  the TE and the TM waves are considered separately. The 

scattering properties o f  the arbitrarily polarized plane waves are simply 

the superposition o f  these two solutions. 

+ = 0; where e and + 

For simplicity, the 

n h  4 
To simpiify the anaiysis, the uiiit veete:~ ii, v, and @ (see Fig, 2) 

of the orthogonal coordinate system of the scatterer w i l l  be introduced. 

Their relationship to the Cartesian unit vectors are as follows: 

h A  .1 A 

A A  ,\ n 

4 A  A 

u = x sin a cos + + y sina sin + + z cos a 

v = x cos a cos + +  y cosa s i n  #I - z sin a 

+ =  -x sin + + y  cos + 
- 1  n h 

where a = cos (6'. z) i s  the angle between unit vectors 3 and z. 

Using the conventional symbols (r, 8, +) for the spherical coordinate 

system, it i s  easy to show that 
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h 4 A 
Note that when a = 8 , u and v are reduced to be 3 and @ , and the 

scatterer becomes a sphere. By means o f  relationships, (1) and (2), trans- 

formations o f  the coordinate components of  a vector among the Cartesian, 

spherical and the (u, v, 4) coordinate systems are given by 

A = A  sina cos $I + A s ina sin 4 + A   COS^ 
u x  Y Z 

= A  cos@ -a) - A e  sin@- a) 
r 

A = A  cosa cos$ + A cosa sin4 - A sina 
Y 2 v x  

= A  sin@ -a) + A cos@ -a) 
r e 

#) X Y 
A = -A sin4 + A cos+ 

Before going into the detail analysis, it i s  convenient to discuss 

the expansions of  the incident wave functions i n  terms of cylindrical 

modes. This  i s  done by expanding the factors, exp. ( i  kxx), cos 4 

exp. (i k x), and sin 4 exp. ( ik  x) i n  a Fourier series of +, where 

k = k sine 

i = fl . It i s  known that 

X X 

k i s  the propagation constant of the medium, and 
X 0 ,  

7 

where m i s  an integer, E' i s  the Neumann's number, i.e. E = 1 

for m = 0, E = 2 for m > 0, Jm i s  the first kind Bessel function of 

order m , and x = p cos 4. By util izing Eq.(4), i t  can be shown 

rn m 

m 

a3 

J ' (k p) cos m +  
.m+ 1 cos 4 exp.(jk x ) =  - 1 E I 

X m m x  
m = o  

.m+ I 
sin cp exp.(jk x ) =  - 1 e I (m/kxp) Jm(kxp) s i n  W 

X m 
m = o  

(3) 

4 



' !  
I 

where the prime denotes the derivative of a function with respect to 

the argument. Observe that when 8 = 0, the right hand side of 

Eqs. (4) - (6) are reduced to unity, cos @ , and sin @, respectively. 

This is the condition for nose on scattering. By virture of Eqs. (4) - (6), 
the incident plane waves can be resolved into harmonics of  the azimuth 

angle 4. 

0 
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3. ACCOUSTIC SCATTERING BY BODY OF REVOLUTION 

The model considered i n  this section i s  a scalor plane wave 

incident on a body o f  revolution. The scatterer i s  either soft or hard. 

Let the incident plane wave function be normalized and given by 

I 
J ,  =exp. Ci(kxx+ k z ) l  z 

where k = k cos 8. The first exponential can be expressed as i n  

Eq. (4). Physically, this means that the incident wave i s  the super- 
z 

- - -:A:-- - C  -. , I  :-A”: -- I - -Aes  T L n r n L r a  the nnint-flntchinz mathod p v a I n s v t t  V I  - J I I I I U I I W Y I  I . I v ~ - - .  ...-.-.-.-, 
can be applied to cases where the incident wave can be resolved into 

cylindrical modes. The scattered wave i s  governed by the Helmholtz’s 

equation 

2 s  2 s  V ~ , + k q = O  

2 
wherev i s  the Laplacian operator. The boundary conditions for the 

present problems are 

. ’  
I S  q + J I = o  

and 

at  the surface of a soft scatterer 

nt the serhce cf Q hard scatterer 

where 2 i s  equivalent to the normal differentiation. Solutions of Eq. (8) 

are known only i n  a few coordinate systems where the variables can be separated. 

In  general, the method of  separation i s  not applicable. But i n  many cases, the 

scattered wave can be expressed by the general solution of one of  the separable 

coordinate systems within practical acceptable approximation. Let the scattered 

wave be expressed by the general solution of  Eq. (8) i n  spherical coordinate 

system with specification of  outgoing waves, i .e. 

au 

8 

(7) 

03 
S 

(9) q, = t E h (*) (kr) pnm(cos e) LAmn cos m+ + B sin m + l  
m n  mn m = o  

n = o  

6 



where A and B are constants determined by boundary conditions 

h (’) i s  the spherical Hankel function of the second kind, P 

Legende function of the first kind. From Eqs. (4) and (7), and the 

boundary conditions, i t  can be seen that B = 0 for a l l  m and n; 

and for each m, 

mn mn 
i s  the 

n n 

mn 

00 

(i Oj .m I Jm(kxp) exp. (jkzz) + t A h (2)(kr) P “(COS e) = O  at c 
mn n n 

n = m  

for a soft scatterer, and 

00 (2) a - Cim J (k p) exp.(jkZz) + t A h (kr) P m(cos@)l = O  at c (11) a u  m x  mn n n 
n = m  

for a hard scatterer, where c denotes the meridian contour (the x-z plane 

or the y-z plane) o f  the scatterer. The expansion coefficients A 

determined by Eqs. (10) or (11). The operator - of Eq. ( 1 1 )  may be 

replaced by 

are 
mn a 

au 

sin y a + - -  cos y - a 
ar  r ae 

A h  
where cosy = u - r. To apply the point-matching method’ - 6, i t  i s  

assumed ihai  only a firiiie iiiiiiitsei. of :zms zlf the series  express:^:! :r! 

Eq. (9) are necessary to retain for good approximation. The infinite 
N 

summations of Eqs. (9) - (1 1) may then be replaced by 1 
n = m  

i s  an integer. 

. .  

, where N 

Similar to the point-matching method for two-dimensional 

problems, (N - m) points, namely: (r 1 , 8 1 ) (r , ,e , ) , - - - - -  ( r N - m  

) , are chosen around the meridian contour o f  the scatterer and at ‘N -m 
these points Eqs. (IO) and (1 1) are satisfied. A system of inhomogeneous 

linear algebraic equations which can be solved for (N -m) expansion 

coefficients A of each Eq. (10) and (1 1) i s  formed. That i s  
mn 

7 



m 
N 

n=m 
( l h(2) (kr) Pn (cos e) A mn = -im J m x  (k p) exp. (jkzz) ] r = r  n 

q 

for a soft scatterer and 
e =  e 

9 

N 

n=m 

a sin y a 
mn 

{(cosy -+- - )  1 h (2)(kr)P m(co@)A 
ar r ae n n 

for a hard scatterer, where q = 1, 2, ---- (N - m), and i s  the angle 
q 

between the radial vector and the normal at  point (r , e ). (See Fig. 2). 

The expansion coefficients A 

using Eq. (12) or (13). The series of Eq. (4) can be truncated in practice. 

Due to the asymptotic behaviour of the Bessel function, the series can be 

q q  
can be obtained easily by a computer 

mn 

truncated for m where J (k p ) <  < 1, or approximately M = k p +6, m x max x max 
where p 

practice, it i s  only necessary to solve a finite number o f  systems o f  equations. 

rumnermore, one computer piogifim is c;pp!icab!e to GI!  these systems nf 

i s  the maximum value of  p of the scatterer. Therefore, in 
max 

r . I  

equations. When a l l  the A 

scattered wave and the scattering properties are readily determined by 

ut i l iz ing Eq. (9). 

' s  of dominant contributions are found, the 
mn 
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4. ELECTROMAGNETIC WAVES SCATTERED BY PERFECTLY CONDUCTING 

BODIES 

In the previous section, i t  i s  seen that the three-dimensional accoustic 

problems can be reduced to the simple forms i n  the two-dimensional case i f  the 

scatterer has rotational symmetry. Similar results for the three-dimensional 

eiectromagneiic prob'lcms were achieved, though the femulatinn I s  more 

complicated. The present analysis i s  also started by resolving the tangential 

components of the incident wave into cylindrical modes by means o f  Eqs. (4) - (6). 

And the scattered fields are expressed i n  terms of the spherical solutions. The 

TE and TM incident waves are considered separately as follows: 

A. TE incident plane wave. 

Considering that the incident plane wave is polarized with the electric 

field perpendicular to the plane o f  incidence, then the incident wave function 

may be written as 

(1 4) 
I 

E = 9 exp. [ i(kxx + kZz ) l  

Observe that this i s  transverse electric to z. In terms of  cylindrical modes, the 

tangential components o f  this incident f ield i n  the scatterer's coordinate system 

are given by 

ai 
1 m +  1 E = -exp. (jkzz) 1 E m i Jm' (kxP) cos rw + m=O 

a0 
I .m+ 1 E = -exp. (jkzz)  COS^ 1 E I (m/k p) J (k p) sin m@ 

V m x m x  m= 1 

where Eqs. (3), (5) and (6) have been applied to Eq. (14). Since the scatterer 

i s  not uniform i n  the z-direction, the scattered field can not be a pure TE 

wave, but can be expressed by the superposition of TE and TM waves. A 

more convenient way to obtain an expression for the scattered field i s  the 

superposition o f  TE and TM waves in  spherical coordinate system, where 
r r 

9 



TE and TM denote the transverse electric ar.2 the transverse magnetic 

with respect to the r-direction. Conventionally, the TE and TM outgoing 

waves are generated by constructing the magnetif- and electric vector potentials 

respectively in the following forms: 

r r 

r r 

7 

A’=;\ I a G (r,e) sin m4 
mn mn m= 1 

n=m 

CD 
S 

F = ?  I b ZG (r,6) cos m6 
m n  
.I... 

-I , 1 1 1 .  

m=O 
n=m 

where Gmn(r,e) = k r h  (*) (kr) P m(cose). The a ‘ s  and b ‘ s  are 
n n mn mn 

constants to be determined by boundary conditions, and Z i s  the intrinsic 

impedance of the medium. The expansion coefficients a and b are 
mn mn 

o f  the same physical units due to the introduction o f  Z i n  Eq. (18) which 

shows convenience in  the latter applications. 

i s  the x-z plane, the choices o f  cos m$ and sin m4 are shown as i n  

Eqs. (17) and (18). 

Since the plane o f  incidence 

With the assumed form of the magnetic cnc! electric vector potential, 

the r, 6, and $ components of the scattered electric f ield can be derived 

easily i i ~  h w i i  i i i  tzx: book;. 7 r 8  Using; the deri\*od expressinns for the rr 

8, and 4 components i n  Eq. (3), it can be shows that the 4 and v components 

of the scattered electric f ield are given by 

b 1 cos m$ (19) mn 
a + - -  

aG 

rnrl r a @ rnn 
mn 1 a G  

S E = 2 I L(-i/r sir@)m 
m, n 

10  



where = kr, and the l i m i t s  of the summations are 

Eqs. (17) and (18). The boundary conditions require 

E = 0 at  the surface o f  the conducting body, 
I S + E 

V V 

he same as those in 
' s  E ' + E  = O  and 

t follows that 

a G  

mn r a @ mn 
m n b  ] 1 00 aG . mn 

,I [(-i/r sine)m - a + -  n=m 

rn+ 1 
= exp.(jk z) E i Jm' (kxp) / Z 

z m  

+ [Icos(e - a)/r sinelm G b 
mn mn 

.m+ 1 
= exp.(jkzz) cosa e I m Jm (kxp)/kx P Z  

m 

at the meridian contour of the rotational symmetric body. Observe that 

these two equations are valid for a l l  m except that when m = 0, the 

last equation does not exist. As in accoustics, the series expressions for 

the incident waves can be truncated for M where J 

Hence, there are only a finite number o f  Eqs. (21) and (22) necessary 

i n  practical applications. Again, i n  oraer io uii  Iiie the pint-mctchlng 

technique, the infinite summations of Eqs. (19) - (22) are replaced by finite 

summations with l i m i t s  from n = m to N, where N i s  an integer. Since 

Eqs. (21) and (22) must be satisfied simultaneously, 2(N-m) points are 

chosen along the meridian contour o f  the scatterer where these two equations 

hold. A system of 2(N-m) simultaneous algebraic equations with 2(N-m) 

unknowns for each m are formed: 

(kxpmax) < < 1 .  M 

1 1  



= exp.(jkzz) cm i m+ 'J r n x  ' (k p)/Z} r = r  
q 

q 
e =  e 

mn 
03 a2G 

mn 
C (-i/r)[n(n+ I) sin(0 - a) G,~/( + cos(e - a) a r a O  !a 

n=m 

(23) 

m + l  = Lexp. (jk z )  cos a 6 i rn J (k p)/k PZ I 
Z m m x  x r = r  

9 

where (r , 8 ) i s  a point at the meridian contour of the body, a 
9 9  9 

angle u evaluated at  the point (r , 0 ), q = 1, 2, 3, . . . . . 2(N - rn) 
q q  

for m f 0 ;  q = 1, 2, ... . N, and a = 0 for m = O .  Similarly, 
on 

these systems of  equations represented by Eq. (23) can be solved numeri- 

cally for the expansion coefficients a and b by a computer without 

difficulty. The program must run (M -I- 1) times. 

i s  the 

rnn mn 

9. T M  Incident p!ane wave. 

The analysis of the scattering of  a TM plane wave i s  quite similar 

to that of a TE plane wave. The incident wave i s  polarized with the 

electric field parallel to the plane o f  incidence. Let the normalized 

electric field vectoral function be given by 

I A E = (-x cos0 + 2sin 0 ) exp. [i(k x + kzz)] 
0 0 X 

Using Eqs. (3) - (6), one obtains the tangential components i n  the 

scatterer's coordinate system o f  the incident f ield such as 
co 

(W I .m + 1 E =-cos 0 exp.(ik z) C c I (m/k p) J (k p)sin r n $  
m x m x  0 2 4 m = l  

12 



m 

Again, i t  i s  convenient to express the scattered fields by the superposition 

o f  outgoing TE and T M  waves in spherical coordinate system. As i n  

the TE case, these outgoing TE 

magnetic and electric vector potentials which are given by 

r r 
and TM waves can be derived from the 

r r 

aY 

A'=? c a G cosmd 
m=o mn mn 
n=m 

m 
S A  F = r  C b Z G  sinmd m = l  mn mn 

n =m 

where the symbols are as previously given. Note that due to the difference 

i n  polarization of the incident waves, the choices o f  cos- rn$ and sin m4 

in Eqs. '(27) and (28) are different from those of  Eqs. (17) and (18). Following 

the steps as stated i n  the TE case, from Eqs. (27) and (28), and uti l izing 

E?, (3); one can derive the 4 and v components of  the scattered electric 

fields which are given by 

8 G  1 mn 
a G  S 

rnn a + -  - b I s i n  md (29) a t  mn r a 0  mn 
E = Z C [i/r sin e)  m 

rn,n d 
3 

- Lcos(e-u)/r sin 9 1  m G  b 1 cos m$ 
mn mn 

13 



I S 
The boundary conditions are the same as before, i.e., E + E = 0 

and E + E = 0 at  the surface of the conducting body. The point- 

matching technique i s  used to evaluate the expansion coefficients A 

The coefficient evaluation procedure i s  the same as i n  Section 4A, a system of 

2(N-rn) [N for m = 03 inhomogeneous algebraic equations with 2(N-m) [N for rn = 01 

unknowns are formed for each rn. They are 

S $ 4 )  I 

V V 

and b rnn . 
mn 

a G  

mn r a Q  mn 
m n b  1 E c C(z/r sin 0) m - a +- - m n  1 N aG 

n=rn 

=cos6 exp.(jk z)rn c (irn+l/Z k x P) J m (k x P) J m (k x P) I r = r  
0 2 rn 

9 e = e  
9 

c) 

(31 1 N a' G 
mn l a  

a C a 6  rnn C c (i/r)[sin(e-a) n (n+ l )G  / +cos(O-a) n =m rnn 5 

- Lcos(9-a)/r s i n  8 ]m G b 3 
mn mn r = r  

q 

r = r  
.rn [i cos 6 cosu J ' (k p) - s i n 6  sina J (k p) 3 = Cexp. (jkzz) I cm 

0 m x  0 m x  

where (r , eq) i s  a point at the meridian contour of the body, a , i s  
9 9 

the angle a evaluated at the point (r , Bq), q = 1, 2, . . . . 2(N - m) 
q 

for m # 0; while q = 1, 2, .. . . N and b 

Eq. (31) can be solved for a 

applications, only a finite number o f  rn i s  considered. 

= 0 for rn =O. Sirnilarily, 
on 

rnn rnn 
' s  and b ' s  by a computer and i n  practical 

14 



5. N O S E  ON SCATTERING 

In the case of nose on scattering, i.e., 0 =0, the problems 

are simpler. Under this condition, the right hand sides of  Eqs. (4) - 
(6) are reduced to 1, cos#, and sin@ respectively. Eqs. (12), (13), 

(23) and (31) are reduced to only one system of equations, i .e., 

m = O  for Eqs. (12) and (13), m = 1 for Eqs. (23) and (31). Hence, 

i n  each case, i t  i s  necessary to evaluate only one system of equations. 

Note that in the electromagnetic scattering problem, two cases are 

the same excepr wirn a phux~ V I  z w  uc.ylrrd w:..-.-..-- 

cases are reducable to those formulated by Schultz et al. 

0 

C fin J------ - J * E C n m n r c .  C M ~ C -  Roth ..I 

9 

15 



6. THE SCATTER1 NG CROSS-SECTIONS. 

In  accoustics, the normalized total scattered power can be 

defined as 

where SZ i s  the soiid angie. Using the orthogcncl relatlonships, of 

the spherical harmonics, the integrations o f  Eq. (32) are easy to 

perform and the total scattered power i s  given by 

2 2 NfM (2) 2 r (n+m) ! 
p at =4n m=O C m Ihn (kr)I 2 3  bmnI  (33) 

n = m  

At large distances, the factor I h (2) (kr) I can be replaced by 
n 

l/kr. Therefore, the total scattered power at large distances 

from the scatterer i s  inversely proportional to the square o f  the frequency. 

In the scattering o f  electromagnetic waves, the scattered fields 

can be determined by Eqs. (17), (18) and (27), (28) for the TE and the 

TM cases, respectively. The expansion coefficients a and b 

are computed by the point matching method. For far field considerations, 

It I s  cnnvenlent to express the scattered field i n  spherical components. 

The 4 components for both cases are given by Eqs. (19) and (29), 

respectively. The 0 component for the TE case i s  given by 

mn mn 

e 

+ (l/r sine) m b G ]sin rn4 (34) 
mn 

W i r )  amn a r: a e 
NfM aL G 

S 

mn mn 
E = C  

n =m 
0 

m = l  

while 

- (l/r sine) b m G  1 cos m+ (35) 
mn 

NfM a2 G 
S 

[(Z/ir)Am,, a a 0  mn mn 
E = C  

m =O r 8 

n =m 
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, 

for the TM case. The r component i s  omitted since it i s  negligible 

when compared with the 8 and @ components i n  the far field region. 

The scattering cross-section in a particular direction (8  

defined by 

I @p) can be 
P 

and R i s  the distance between the observbtion point and the origin. 

The total scattered power i s  given by 

Substituting Eqs. (19) and (32), or (29) and (33) into Eq. (34), and 

noting that the orthogonal relationships of the trigonometric functions and 

n.t 
n(n + 1) 8 

2 (n+m)! - -  
- 2n+1 -oT 

yields. 

(37) n =m 

where the asymptotic values o f  the spherical Bessel functions 

(2) .n + 1 
l i m  
r + a h  (kr) = I exp. (-jkr) / kr 

' [rh (kr) 1 = in exp. (-jkr) 
d r n  

and r + m  

n 

(2) 
Iim 
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have been used. Eq. (35) i s  valid for both the TE and the TM cases, 

of  course, the values o f  a and b are different. The total 
mn mn 

scattering cross section i s  defined as the ratio of  the total scattered 

power to the incident power density. Thus, 

2 2 2 N,M 
o+ = (2nZ ) C (1/€ )[2n(n+l)(n+m)!/(2n+l)(n -m)! IC la I +Ibmn I 1 (38) 

m mn m =O 
n =m 

!: th!s Fnrmiilation, the expansion coefficients a m n  and b are pro- 

portional to 1/Zk, hence, the total scattering cross section i s  , i n  fact, 

expressed i n  forms of l/k . 
..... mn 

2 
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7. EXAMPLE. 

To demonstrate the accuracy of the point-matching method for 

this application, the scattering of  a plane wave by a conducting sphere w i l l  

be considered. The good agreement between the approximate solutions 

and the exact answers shows that the boundary conditions are approximately 

sctisfied when opplying the pointmatching technique. 6,7 

Consider the plane wave E' = -x exp.(jkz) scattered by a perfectly 

conducting sphere of  radius a. Since 8 = O  and a =  8, Eq. (31) i s  

reduced to a quite simple form. In IQDIC; :, ;!-,e z;c-cx-.=I~n r ccefficients 

a and bn , calculated by the point-matching method, are compared 

with those o f  rigorous solutions for ka = 1 .  The electromagnetic field 

satisifes the boundary conditions exactly at three points for the three-point 

approximation, while the field satisfies the boundary conditions at four 

points for the four-point approximation. The chosen points i n  these cal- 

culations are r = a, 8 = 0, 90°, and 180' for the three-point approximation; 

r = a, 8 = 0, 60°, 120°, and 180" for the four-point approximation. Note 

that the points of  8 = 0" and 8 = 180° give the same algebraic equation. If 
the point r = a, 8 = 0' i s  chosen, the solutions satisfy the boundary conditions 

at the point r = a, 8 = 180' automatically. Therefore, the three-point appro- 

ximation has a system o f  four equations and ihe foui-peifit approximcti~r: has C! 

system of six equations only. Of course, i f  neither 8 = 0" nor 8 = 18OU i s  

chosen, the situation i s  the same as discussed previously. One should note 

that degenerate equations may arise i n  other cases. 

0 . - 1 1  

n 

The exact solutions in Table I are obtained by assuming that the 

magnetic and electric vector potentials for the scattered field are given by 

m 
S A  F = r  C b Z G  sin4 

n I n  
n = l  
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respectively. The scattered field obtained from Eqs. (39) and (40) plus 

the incident field satisfies the boundary conditions exactly at r = a .  

The good agreements of the four-point approximation with the exact 

solutions reveals that the boundary conditions are satisfied quite well 

by the point-matching technique. 

21 



8. DISCUSSION. 

It was shown that the scattering by rotational symmetric bodies in 

accoustics i s  quite similar to the two-dimensional problems as those discussed 
5 4 

by Yee and Mul l in et al. For each cylindrical mode of  the incident wave, 

a corresponding scattered field can be obtained by the point-matching method, 

similar :O the solutio0 of the two-dimensional problems except the Hankel 

functions are replaced by the spherical Hankel functions. One can easily 

convince himself that the validity of  the point-matching method for each cylin- 

drical mode i s  the same as those in h e  re&~e~-tce; [?! - CbI. That is, the 

method works well and gives acceptable numerical results to bodies of smooth 

meridian contour which are not gross perturbations from the circular, and at 

low frequencies, the boundary conditions are satisfied around the meridian 

contour of the body as shown i n  Figs. 5 and 6 of references El. Obviously, 

this method i s  not applicable to needles or dishes. Of course, a l l  these 

statements for the applicability of the point-matching method are valid when 

applied to the superposition o f  the cylindrical modes, i.e. to the scattering 

by rotational symmetric bodies. 

4 

Returning to the electromagnetic problems now, for each cylindrical 

mode of  the incident wave, the same situation arises except that two tangen- 

t ia l  components of  the eiectric fieid satisfy the bovndcrry condition simultane- 

ously. The applicability of  the point-matching method for each component 

i s  the same as i n  accoustics. It can then be concluded that the same statements 

for the applicability of the method are valid for Scattering of  electromagnetic 

waves by perfectly conducting bodies of  rotational symmetry. 
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I .  

Fig. 1 - The scatterer and the incident wave 

in the Cartesian coordinate system. 
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Fig. 2 - (a) The unit vectors v and 6 of the scatterer's coordinate 

system and the Cartesian coordinate system. 

(b) The unit vectors u and v of the scatterer's coordinate 

coordinate system and the Cartesian coordinate system 

[ A  rotational view of (a)]. 
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